

Silicon Fertilizers

Keys to achieve growth and yield Silic^{on} increases

Resistance to disease and pest:

Si deposition in the epidermis tissues provides a physical barrier to pathogens and insects, allowing for a reduction in the frequency of chemical applications.

Cell structure:

Si accumulated un the epidermal tissues increases the mechanical estability of the plant. Reduces the incident of lodging.

Photosynthetic Activity:

The improved structure produces stronger stems with more erect leaves, increasing its ability to capture light.

Uptake of Nutrients

Particularly Nitrogen, Phosphorous, Potassium and Micronutrients.

Resistance to Environmental Stresses.

- tissues reduces transpiration rates.
- **Reduce salt stress** by inhibiting Sodium uptake.
- Alleviate toxicity of heavy metals: Iron, Manganese, Cadmiun, Aluminium, and Zinc by regulating plant uptake

Post Harvest Life.

Si can associate with cell wall proteins where it might exert an active production of defence compounds.

• Reduced drought and heat stress. The deposition of Si in the plant

Product range

pH 5-6

3,0

COMPOSITION

Silicon (SiO₂) Iron (Fe)

3

Vegetables

Chili Cucurbit Onion Tomato Strawberry

Fruit trees

Avocado Pomegrenade Date Palm

Silic^{on} increases the resistance of the plants against diseases

	Сгор	Disease	Reference	Сгор	Disease	Reference
	Rice	Sheath Blight Neck blast Leaf blast Brown coot	Rodrigues et al (2001) Datnoff et al (1991) Seebold et al (2001)	Barley	Powdery mildew	Jiang et al (1989)
		Leaf scald Stem rot	Seebold et al (2000) Seebold et al (2000)	Cowpea	Rust	Heath & Stumpf (1986)
	Wheat	Powdery mildew	Menzies et al (2002)	Grass	Leaf spot	Brecht et la (2004)
6	Cucumber	Powdery mildew	Menzies et al (1991)	Rose	Podosphaera	Shetty et la (2004)
	Sugarcane	Sugarcane ring spot	Matichenchov & Calvert (2002)		pannosa	

Mechanisms for Si -mediated alleviation of drought and salt stress in plants

6

Mode of action

Typical action of a Silicon treatment

0 0

No

Si

Treatment

During infection, fungal hyphae penetrate leaf cuticle into the epidermal cell.

Silicon reinforced leaf cuticle increases puncture resistance decreasing pathogen entry into the cell.

ASPEAGRO GLOBAL S.L. (Alicante) Spain

(Alicante) Spain

- export@aspeagro.com
 - gm@aspeagro.com
- www.aspeagro.com

